
the boundary surfaces); h, distance between LVI layers; A, thermal conductivity of an in- 
terval; %m, mean integrated thermal conductivity; g0, reduced degree of balckness of neigh- 
boring shields; a, Stefan-Boltzmann constant; and the subscript is the number of an interval 
or a cooled shield. 
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CONTRIBUTION TO THE THEORY OF THE VISCOELASTICITY 

OF DISPERSE SYSTEMS UNDER THE CONDITIONS OF HEAT 

AND MASS TRANSFER 

Yu. L. Mentkovskii, R. V. Lutsyk, 
and V. P. Kholod 

UDC 677:620.193.19 

An open system of equations for the simultaneous description of heat andmass trans- 
fer and deformation processes in disperse materials is derived on the basis of the 
Boltzmann-Volterra theory and the first law of thermodynamics for open systems. 

Introduction. The problem of the interplay of heat and mass transfer and deformation 
phenomena is of unquestionable interest from the theoretical and applied standpoints. It is 
important, e.g., in problems of the optimization of the technological moisture-heat treat- 
ment processes, including drying of disperse materials under loading and deformation. Modern 
science knows of a number of theoretical methods for taking account of the effect of heat 
and moisture on the deformation properties of materials. Within the framework of the heredi- 
tary Boltzmann-Volterra theory [I] the effect of heat and moisture on creep of materials and 
stress relaxation in them is usually taken into account by the method of factor-time analog- 
ies [2, 3] in qualitative agreement with experiment. It seems more consistent, however, not 
to make a one-sided allowance for only the effect of heat transfer on the rheological pro- 
cesses but rather to describe their effect on each other. Clearly, such a complex descrip- 
tion requires the invocation of not only mechanical laws but also thermodynamic laws and 
their interaction. 

In this communication we propose a variant of the complex description of the above-men- 
tioned phenomena on the basis of the hereditary Boltzmann-Volterra relations and the first 
law of thermodynamics for open systems, using a number of model relations. As a result we 
obtain a system of equations for the concurrent description of the heat and mass transfer 
and deformation processes and make a preliminary analysis of a number of its genera] results. 
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For simplicity, we consider a system with lumped parameters; we assume that a small 
material rod (strip, filament, band) is subjected to hydrothermal treatment under a small 
uniaxial load (tension). 

I. Mechanical Laws. Let us consider the problem of uniaxial loading or tension of sam- 
ples in the form of small rods (filaments, strips, bands, etc.) of a hydrophilic material 
under the conditions of heat and mass exchange with an ambient medium. We assume that the 
creep (cr) of the materials and the stress relaxation (r) in them can be described with the 
aid of the hereditary Boltzmann-Volterra relations: 

' ~ ('0 ~(t)= *(t---~) +~K(t, ~) d'q (lcr) 
E E to 

t 

= ( l r )  
to 

The creep kernel K(t, T) will be assumed to be degenerate: 

(t, ~) = ~ ( t ) ~  (~), 

where ~1(t) and ~2(Y) are, for the present, arbitrary positive functions of time. This choice 
of the kernel K(t, T) in principle narrows down the theory but, inasmuch as functions ~i and 
~2 are arbitrary, it may encompass a wide spectrum of variants. 

It is convenient to introduce two new functions q and L from the formulas 

(t) = ,r,~ (t) ~,. (t) ,  L (t) - 
dt [ ~ (to) ! 

For the creep and relaxation kernels we can easily obtain 

t 

K(t, "r)= ~(x)exp (-- . [  L(O)dO), 
x (2cr) 

t 

R (t, w) = ~1 (~) exp (--  j" [L (0) + ~l (0)] dO). (2 r )  

We can show that the hereditary relations (icr) and (it) with kernels (2cr) and (2r) are 
equivalent to the Cauchy boundary-value problem 

{d } d } --~-+L(t) ~(t)= t 7  +L(O+~(t) ,~(t) 
E ' 

(to) = ~ (tot ( 4 )  
E 

To obtain relation (Icr) we must find o(t) and, after calculating the right side of (3), 
solve the Cauchy boundary-value problem for s Then to obtain relation (ir), we must 
assign e(t) and, calculating the left side of (3), solve the given Cauchy boundary-value 
problem for a(t). In each case we solve an evolution boundary-value problem of the Cauchy 
type 

av + ~ .  (t) y = [ (t), v (to) = yo, 
dt 

reflecting the causality principle. The solution of the Cauchy boundary-value problem (3) 
and (4) has the form 

t t t 

to to "~ 

(s) 
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The application of this formula to both Cauchy boundary-value problems associated with Eq. 
(3) and condition (4), after obvious integration by parts leads to relations (icr) and (ir). 

According to formula (5), the relation times Tcr and T r, of the processes of creep and 
stress relaxation processes, respectively, can be determined from the formulas 

1 I 
. ---r-=---- ~ Tr----- __ 

where ~ cr and ~ r are the mean values of the functions 

(6) 

~r (t) = L (t), ~ (t) = L (t) + n (t) 

in the time intervals (to, Tcr) and (to, ~r), which are determined by the conditions 

(7) 

r cr~ r r 

.I ~cr(0) d0 ~--- ], ~ ~r(0) dO 
to to 

----I. 

Analysis of Eqs. (icr) and (ir) with kernels (2or) and (2r) and with allowance for (6) 
and (7) shows that the variable creep (viscosity) coefficient n(t) determines the magnitude 
of the hereditary effects and the functions ~er(t) and ~r(t) (so-called evolutes) deter- 
mine the rates of the respective relaxation processes. For materials whose creep increases 
and accelerates when moistened and heated, therefore, it is natural to set 

a ~  a ~  > o ,  (8 )  an---T- > O, aT 

taking ~' to stand for both ~cr and ~ r" It is assumed here that both evolutes depend on 
the time through the temperature T(t) of the "working body" and the mass m(t) of the moisture 
in them: 

J~ (0 = ~ IT (t), m (t)l. 
(9 )  

It is natural also to assume that 

a~ ~o, aq am -~-f-~o. ~io) 

Modeling the functions ~(t) and L(t) from some considerations or others (6) we must take into 
account conditions (8), (9), and (i0)~ 

II. Thermodynamic Relations. As applied to the problem of drying a rod the first law 
of thermodynamics can be written as 

6Q = dU + 6A--~dm,  (11) 

where the customary notation has been employed. Invoking a n~ber of rather general model 
relations, we convert (!I) into a "working" equation, which together with (3) and (4) can 
serve as a basis for the theory. 

I. We express the amount of heat 6Q imprted to the rod in the time dt by using the fa- 
miliar Newton-RicLhman law 

6Q = [ (t) [Tm-- T (t )] dr, (12) 

2. During drying the specific chemical potential ~(t) coincides with the specific 
vaporization heat r(t) of the moisture, at first free and then bound [A], lee., B(t) = r(t). 

The variants of modeling of the terms dU + 6A remaining in (!!0) will be different for 
different problems. For specificity, we consider the problem of stress relaxation in a moist- 
ened rod during low (5 5%) tension under the conditions of isothermal (T c =const) and 
isothermal (s = const) drying. This problem lendes itself to a simple experimental implemen- 
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tation [ 5 ] ,  The material of the rod will be assumed to swell when moistened and to shrink 
when dried; the material is assumed to expand when heated. Accordingly, it undergoes a la- 
tent elongation during drying as a result of the shrinkage of the material: 

Al (t) = t - -  l o (t). ( 1 3 )  

Here s the variable length of the free (not elongated) rod, corresponding to its moisture 
content and temperature to the time t and s is the fixed length of the elongated rod. The 
extension r in this case is variable because of the latent elongation (13): 

~(t) t - -  to(t ) m(t )  
lo(t) = lo(t---7 (14)  

It is convenient to split the elongation ~s (13) into two terms A/0+'~/b where Alo =l--lo(to) 
is the initial elongation and Al1(t)=lo(lo)--lo(t) is the additional elongation due to the latent 
shrinkage of the material. Obviously, 4s 0 = const and, moreover, lo(t)=lo(lo)--All(1). 

From this, for g(t)(!4) we can easily get 

(t) = (t) {1 + (t) / 
)o(to) ' lo(to)--Xl,(t)J' 

or in the linear approximation in the elongation As and As I e(t)=e0+Ae(t), where eo=Alo/lo(lo)=c0nst, 
const and As(t)=Al(t)/lo(to). Therefore, 

d d 
at --dr (As(0). (15)  

Let us proceed with the interpretation of the terms in (ii) as applied to the problem 
formulated above. 

3. In the case of isometric (s = const) drying the mechanical work is zero: 

6A = 0. (16)  
4. The change dU in the internal energy here is due to three factors: a) heating 

(change in temperature) Cr b) shrinkage of the material (latent extension( Vade; c) 
energy dissipation VD(t)r as a result of stress relaxation. Thus 

dU = Ce (t) dT + Vad~ + VD (t) eda. (17 ) 

in the last term D(t) is a dimension less dissipation coefficiente, reflecting the properties 
of the materials. 

Substituting Eqs. (12), (16), and (17) into Eq. (!!) and giving all the quantities per 
unit time, we obtain the equation 

_• dm 
t (t) {Te - -  T (t)} = C,  (t) + Va d__.~_~, + VD (t) ~ d(; _ r (t) 

dt dt dt 

Having changed the origin for temperature measurement, AT(t) = T(t)-T c, with allowance for 
(15) we finally arrive at the working equation 

C,( t )  d (AT)  ~_[(t) A T = r ( t )  dm __Va d(Ae) VD(t) 8 da 
dt dt dt d t '  (18)  

which together with (3) and condition (4) forms the initial system of equations describing 
the interrelated processes of stress relaxation in the material and its heat and mass ex- 
change with the ambient medium. This system in principle makes it possible to determine any 
pair of the three quantities AT(t), m(t), and r when the third quantity is given. If we 
further take into account that the extension ~(t), or to be more exact its variable part 
&g(t), is determined by the change in the temperature T(t) and the moisture content of the 
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rod and model the pertinent relation, then instead of the three quantities AT(t), m(t), and 
c(t) in Eqs. (3) and (18) we have only two, AT(t) and m(t), and these will be determined 
uniquely by the coefficient functions of Eqs. (3) and (18) and the initial conditions. 

System (3), (18) in principle is also suitable for determining any two coefficients 
(parameters of these equations) other quantities being equal, i.e., for solving the inverse 
problems which indirectly determine physical quantities that are rather inaccessible to 
direct measurement. 

Let us now consider possible variants of model relations for ~r (t), Ae(t), etc. and some 
general consequences of the main system of equations (3), (18). 

III. Additional Concepts and Some Conclusions. The main system of equations (3), (18) 
will be completely constructional once the coefficients of the functions and other quanti- 
ties appearing in it are modeled or tabulated. 

As the simplest example of the realization of conditions (8) we can take a model ex- 
pression of the form 

(t) = ,,~o + 0 (t - -  ts) { 1 - -  exp [ - -  ~ (T (l) - -  T (ts)) - -  ~ (m (t) - -  m (ts))] } or{, ( 1 9 )  

where are the constants~ 0, ~, a, and B are positive. We have in mind here both evolutes 
~acr and ~r (each with its own parameters) with allowance for the relation n(t) =SF r - ~cr 
and conditions (i0). Besides conditions (8), Eq. (19) reflects the relaxational nature of 
the change in the evolutes ~(t), which is typical processes that lead to equilibrium. 

Confining the discussion to the !ineaer approximation, we have 

(t) = Mo q- 0 (t - -  t s) {a IT (t) - -  T (ts)l + b [m (t) - -  m (ts)] }, 
(20)  

where 

Obviously, comparison of the approach discussed here witch experiment should start from the 
linear variant (20) and only in the event of failure should the theory be more complicated. 

In the linear~approximation we can also set 

A~ (t) = o (t - -  t~) {c~ iT (t) - -  T (%)1 + C2 Vn (t~) - - , n  (t)l}, 

whence 

_ { d (AT)  din} de d(A~) _ 0 ( t - - I s )  C1 ~ C,, ( 2 1 )  
at at " - - C  " 

Here C i and C2 are constants (parameters of the theory). This formulation reduces the num- 
ber of functions sought from three (AT, m, s) to two (AT, m) according to the number of equa- 
tions (3), (18). Without considering here the system (3), (18) as a whole which corresponds 
to such approximations, we confine the discussion to substitution of (21) into Eq. (18): 

{C~ (t) + 0  (t - -  ts) CaVe} d (AT) 
dt 

- -  + f (t) AT (t) = {r (l) - -  0 (t - -  ts) C~Va} dm da - - ~  + VD (t) 8 (t) - d" -i- 

From this we see that the deformation (including shrinkage) results in an effective change 
in the heat capacity and the specific heat of evaporation, 

C~ (0 -+ C~ (t) + 0 (t - -  &) C3V~, r (t) ~ r (t) - -  0 (t - -  ts) C~Vo, 

as was observed easrlier by one of us (Lutsyk) experimentally [6]. This provides some con- 
firmation that the discussions above are correct. It should also be noted that by slightly 
changing the form of the discussion concerning the terms dU and 6A, we can also arrive at 
the same system of equations (3), (18) when the extension ~(t) is not latent but explicit 
(i.e., the length s of the sample is not fized). 
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Conclusion. We have constructed a universal system of equations (3), (18) which de- 
scribes the interplay of the heat and mass transfer processes and deformation processes in 
disperse systems (in the form fo small rods, bands, strips, etc.) under uniaxial loading as 
well as latent or explicit extension. A preliminary analysis of this system gives grounds 
for recommending it for practical applicatdions. 

NOTATION 

g(t), deformation of the sample; o(t), stress in the sample; E, initial elastic modulus 
of the material; K(t, T), kernels of the creep and relaxation, respectively; t, t s, and to, 
running time, the time corresponding to the onset of shrinkage of the material during drying, 
and the initial time; f(t), integrated coefficient of heat exchange between the body being 
dried and the ambient medium; T(t), temperature of the body; T m, temperature of the ambient 
medium; C~(t), heat capacity of the rod at a fixed extension e; V, volume of the body being 
dried; and e(T), Heaviside unit function. 
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